PERFIDI filters to suppress and/or quantify relaxation time components in multi-component systems: an example for fat-water systems.

نویسندگان

  • V Bortolotti
  • P Fantazzini
  • M Gombia
  • D Greco
  • G Rinaldin
  • S Sykora
چکیده

Parametrically Enabled Relaxation FIlters with Double and multiple Inversion (PERFIDI) is an experimental NMR/MRI technique devised to analyze samples/voxels characterized by multi-exponential longitudinal relaxation. It is based on a linear combination of NMR sequences with suitable preambles composed of inversion pulses. Given any standard NMR/MRI sequence, it permits one to modify it in a way which will attenuate, in a predictable manner and before data acquisition, signals arising from components with different r rates (r=1/T1). Consequently, it is possible to define relatively simple protocols to suppress and/or to quantify signals of different components. This article describes a simple way to construct low-pass, high-pass and band-pass PERFIDI filters. Experimental data are presented in which the method has been used to separate fat and water proton signals. We also present a novel protocol for very fast determination of the ratio between the fat signal and the total signal which avoids any time-consuming magnetization recovery multi-array data acquisition. The method has been validated also for MRI, producing well T1-contrasted images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PERFIDI: Parametrically Enabled Relaxation Filters with Double Inversion

We present a novel approach to the nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) analysis of complex samples with a non-trivial distribution of longitudinal relaxation rates R1. The method, denominated PERFIDI, aims at separating signals arising from components with different R1's prior to actual data acquisition. Given any standard NMR / MRI pulse sequence, by itself in...

متن کامل

A New Continuous Multi-State Reliability Model with Time Dependent Component Performance Rate

A CSS1†is a system with the continues-state components. When a component has the ability to obtain all the situations from completely working to completely failed, it named continues-state component. In the real world, performance rate of elements are continuous and decrease by time. Continuity of components causes infinite working states and grows up the system states. In this paper we propose...

متن کامل

Condition Based Maintenance for Two-Component Systems with Reliability and Cost Considerations

This paper studies a maintenance policy for a system composed of two components, which are subject to continuous deterioration and consequently stochastic failure. The failure of each component results in the failure of the system. The components are inspected periodically and their deterioration degrees are monitored. The components can be maintained using different maintenance actions (repair...

متن کامل

Eigenvalue Assignment Of Discrete-Time Linear Systems With State And Input Time-Delays

Time-delays are important components of many dynamical systems that describe coupling or interconnection between dynamics, propagation or transport phenomena, and heredity and competition in population dynamics. The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stabi...

متن کامل

Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices

In this paper, Using a 2D photonic crystal and a novel square ring resonator,several compact and simple structures have been introduced in the present paper toconstruct optical add/drop filters and multi-channel filter. The difference structures hasbeen designed and simulated by using the proposed square ring resonator and differentdropping waveguides. To do analyses, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 206 2  شماره 

صفحات  -

تاریخ انتشار 2010